Exercise 4

Solve the differential equation or initial-value problem using the method of undetermined coefficients.

$$
y^{\prime \prime}-2 y^{\prime}+2 y=x+e^{x}
$$

Solution

Since the ODE is linear, the general solution can be written as the sum of a complementary solution and a particular solution.

$$
y=y_{c}+y_{p}
$$

The complementary solution satisfies the associated homogeneous equation.

$$
\begin{equation*}
y_{c}^{\prime \prime}-2 y_{c}^{\prime}+2 y_{c}=0 \tag{1}
\end{equation*}
$$

This is a linear homogeneous ODE, so its solutions are of the form $y_{c}=e^{r x}$.

$$
y_{c}=e^{r x} \quad \rightarrow \quad y_{c}^{\prime}=r e^{r x} \quad \rightarrow \quad y_{c}^{\prime \prime}=r^{2} e^{r x}
$$

Plug these formulas into equation (1).

$$
r^{2} e^{r x}-2\left(r e^{r x}\right)+2\left(e^{r x}\right)=0
$$

Divide both sides by $e^{r x}$.

$$
r^{2}-2 r+2=0
$$

Solve for r.

$$
\begin{gathered}
r=\frac{2 \pm \sqrt{4-4(1)(2)}}{2}=\frac{2 \pm \sqrt{-4}}{2}=1 \pm i \\
r=\{1-i, 1+i\}
\end{gathered}
$$

Two solutions to the ODE are $e^{(1-i) x}$ and $e^{(1+i) x}$. By the principle of superposition, then,

$$
\begin{aligned}
y_{c}(x) & =C_{1} e^{(1-i) x}+C_{2} e^{(1+i) x} \\
& =C_{1} e^{x} e^{-i x}+C_{2} e^{x} e^{i x} \\
& =e^{x}\left(C_{1} e^{-i x}+C_{2} e^{i x}\right) \\
& =e^{x}\left[C_{1}(\cos x-i \sin x)+C_{2}(\cos x+i \sin x)\right] \\
& =e^{x}\left[\left(C_{1}+C_{2}\right) \cos x+\left(-i C_{1}+i C_{2}\right) \sin x\right] \\
& =e^{x}\left(C_{3} \cos x+C_{4} \sin x\right) .
\end{aligned}
$$

On the other hand, the particular solution satisfies the original ODE.

$$
\begin{equation*}
y_{p}^{\prime \prime}-2 y_{p}^{\prime}+2 y_{p}=x+e^{x} \tag{2}
\end{equation*}
$$

Since the inhomogeneous term is the sum of a polynomial of degree 1 and an exponential function, the particular solution is $y_{p}=A x+B+C e^{x}$.

$$
y_{p}=A x+B+C e^{x} \quad \rightarrow \quad y_{p}^{\prime}=A+C e^{x} \quad \rightarrow \quad y_{p}^{\prime \prime}=C e^{x}
$$

Substitute these formulas into equation (2).

$$
\begin{gathered}
C e^{x}-2\left(A+C e^{x}\right)+2\left(A x+B+C e^{x}\right)=x+e^{x} \\
(-2 A+2 B)+(2 A) x+(C-2 C+2 C) e^{x}=x+e^{x}
\end{gathered}
$$

Match the coefficients on both sides to get a system of equations for A, B, and C.

$$
\left.\begin{array}{r}
-2 A+2 B=0 \\
2 A=1 \\
C-2 C+2 C=1
\end{array}\right\}
$$

Solving it yields

$$
A=\frac{1}{2} \quad \text { and } \quad B=\frac{1}{2} \quad \text { and } \quad C=1,
$$

which means the particular solution is

$$
y_{p}=\frac{1}{2} x+\frac{1}{2}+e^{x} .
$$

Therefore, the general solution to the ODE is

$$
\begin{aligned}
y(x) & =y_{c}+y_{p} \\
& =e^{x}\left(C_{3} \cos x+C_{4} \sin x\right)+\frac{1}{2} x+\frac{1}{2}+e^{x},
\end{aligned}
$$

where C_{3} and C_{4} are arbitrary constants.

